About the co-expertise process

Jacques Lochard
Department of Health Risk Control
Atomic Bomb Disease Institute, Nagasaki University
International Commission of Radiological Protection
Introduction

- Experience from the Chernobyl and Fukushima nuclear accidents clearly highlighted that in a context of **absence of background knowledge** of the population about radiation risk and **distrust** of authorities and experts, the diffusion of scientific and technical information plays a very limited role in helping people to understand the situation they are confronted with after a nuclear disaster.

- This experience also demonstrated that **approaches** integrating the **active cooperation** of those affected into the recovery process enable to **empower** them in order to make **informed decisions** about their own protection and that of their loved ones.
The Chernobyl and Fukushima experience

• Chernobyl:
The **ETHOS project** and **CORE program** in Belarus (1996-2008): initiated by a team of French experts in villages of the Stolyn and Bragin districts with the support of the Belarus authorities

Fukushima:

• The **crisis communication experience** from professors of the Nagasaki University (Spring 2011)
• The **Fukushima Dialogue** meetings initiated by ICRP (2011-today)
• The **Kawauchi village experience** (2011-today): initiated by local authorities and professors of the Nagasaki University with the support of the Japanese government

• The **Suetsugi community experience** (2011-today): initiated by local citizens in cooperation with voluntary experts and the support of local authorities and organizations
The Fukushima Dialogue meetings
Third meeting on ‘Improving the quality of food products’
Date City, July 2012
Kawauchi, Japan

Fukushima

Suetsugi, Japan
Lessons learned (1)

• The most effective way of engaging affected people in the recovery phase after a nuclear disaster is:
 • To listen understand their daily concerns
 • To carry out measurements with them in order they understand where, when and how they are exposed. This must be done step by step starting from the source of exposure to gradually go to the exposures received by individuals through the various exposure pathways
 • To use as much as possible common language and the narration
 • And never forgetting that communicating about risk only works if there is trust between the people affected and the experts / authorities
Lessons learned (2)

- When engaging affected people, experts should:
 - Adopt a **prudent approach** for managing radiation risk based on the **optimisation principle** i.e. keeping all exposures as low as reasonably achievable
 - Promote protective actions improving the **well being of individuals** and the **quality of the living together** of the community they belong
 - Respect their **individual decisions** while preserving their **autonomy of choice**
 - Keep in mind that the issue at stake is **not to make people accepting the risk** but allowing them **to make informed decisions** about their protection and their life choices
 - All of the above lessons have led to gradually develop the so called ‘**co-expertise process**’ (cooperation between experts and stakeholders)
The co-expertise process

- Establishing dialogues to share experience and knowledge
- Engaging affected people in measurements and sharing results
- Identifying self-help protective actions and organizing collective vigilance
- Implementing local projects with the support of experts

Combining:

- Two-way communication
- Trust building
- Citizen participation/empowerment
- Technical expertise
Practical radiological protection culture

• The co-expertise process promotes the development of a **practical radiological protection culture** among affected people defined as the **knowledge** and **skills** enabling citizens **to make well-informed choices and behave wisely** in situations involving potential or actual exposures to ionising radiation.

• The practical radiological protection culture allows people:
 - To **interpret** the results of the measurements of radiation.
 - To **build their own benchmarks** in relation to the radioactivity present in their daily life.
 - To make their own decisions to protect themselves and their loved ones and to **implement self-help protective actions**.
 - To **develop local projects** to improve their living conditions.
 - To **judge the effectiveness** of the protective actions implemented by themselves but also by authorities and organisations.
In summary

Co-expertise Process

Practical radiological protection culture

Self-help protective actions Community projects
The ethical dimensions of the co-expertise process

- To be credible in the implementation of the process experts must:
 - Master the scientific basis of radiological protection and its practical implementation - **Accountability**
 - Share openly all information they own and recognize limitations - **Transparency**
 - Listen carefully to the stakeholders to understand their concerns and individual situations - **Empathy**
 - Deliberate and decide together with stakeholders - **Inclusiveness**
 - Act in accordance with the ethics of radiological protection, that is to say **prudently** and **equitably**
 - Ensure **respect for people's freedom of choice** without manipulating them in any way
 - And above all to remain **faithful** to their commitment over time
Concluding remarks

- Lessons learned in co-expertise processes implemented in Belarus and Japan demonstrated the feasibility to develop a practical radiation protection culture to empower people in order they make informed decisions about their protection and thus restore their dignity and trust in authorities and experts.

- This requires the mobilization of specific skills, adapted means of measuring radiation and the support of authorities. It also takes time…

- The key of success is to put science and technology at the service of resolving the concrete problems people are facing.

‘To work with people and not for them’
References

Thank you for your attention

Kawauchi villagers collecting mushrooms to draw up a contamination map

Borrowed from Noboru Takamura
http://www-sdc.med.nagasaki-u.ac.jp/abdi/index.html