Catchment scale Radiation monitoring in Fukushima area following the Fukushima Daichi Nuclear Power Plant accident

> Triyono Basuki Hiroshima University

Introduction

Radiation exposure pathways

https://www.learner.org/courses/envsci/visual/visual.php?shortname=exposure_pathways

Introduction

How radioactive cesium deposited and migrate in terrestrial environment?

Introduction

Objectives of our work

- Monitor the radioactive contamination in terrestrial area by analyzing horizontal and vertical distribution of air dose rate and Cs-137 inventory on soil catchment in different elevation and land use.
- Analyze the migration of Cs-137 in terrestrial area and accumulation of Cs-137 into lake/reservoir sediment

Field survey in Hibara Lake area

Sampling

2016.

Sampling

Fig. 2

Depth profile of deposition densities (Bq/m²) of ^{134}Cs and ^{137}Cs in sediment, which are decay corrected at sampling day, August 8, 2016

Fig. 3

Deposition densities (Bq/m^2) of ¹³⁷Cs in surface (0-5 cm) of soil in surrounding area, river sediment and lake sediment in Area 1 (flat area), which are decay corrected at sampling day, August 8, 2016

Table 3 Activity concentration of ¹³⁴ Cs and ¹³⁷ Cs on sand fraction and silt and clay	Sample		Deepness (cm)	¹³⁴ Cs				¹³⁷ Cs			
				Sand Sil		Silt and	Silt and clay		Sand		Silt and clay
fraction of lake sediment and soil				2 mm-	70 µm	< 70 μ	m	2 mm-	70 µm	$< 70 \ \mu m$	
				Bq/kg	Error	Bq/kg	Error	Bq/kg	Error	Bq/kg	Error
	Lake sediment	L1-1	0–5	19	1	190	20	81	6	1880	220
			5-10	ND		81	7	16	1	440	50
			10-15	ND		42	4	26	2	660	80
		L1-2	0-5	23	2	56	5	86	7	700	70
			5-10	ND		ND		14	1	100	10
			10-15	ND		ND		37	4	110	10
		L2-1	0-5	15	1	20	1	100	10	250	20
			5-10	18	1	31	2	91	6	330	30
			10-15	ND		ND		12	1	73	8
		L2-2	0-5	27	2	ND		150	10	400	40
			5-10	29	1	44	5	190	10	700	60
			10-15	12	1	11	1	60	4	160	10
		L3-1	0-5	210	10	1460	60	1110	30	19,730	850
			5-10	270	20	1680	70	1450	40	21,060	890
			10-15	90	5	410	20	1020	40	6650	300
		L3-2	0-5	ND		ND		50	6	1450	180
			5-10	ND		ND		13	2	130	20
			10-15	ND		ND		6.8	0.9	90	10
	Soil	S1-1	0-5	18	2	39	3	120	10	530	50
			5-10	ND		ND)	10.1	0.8	37	4
			10-15	ND		ND		ND		60	7
		S1-2	0-5	84	7	130	10	820	70	1760	180
			5-10	7	1	15	2	86	8	66	7
			10-15	96	4	160	10	860	70	2370	260

Radioactivity was corrected at sampling day, August 8, 2016. ND shows Not Detected. Sample L1-3 is not measured due to its low bulk concentration of radioactive cesium. Calculated detection limit is 3.8 and 5 Bq/kg for ¹³⁴Cs and ¹³⁷Cs, respectively. [36]

Field survey in Ogi reservoir area

Measurement and sampling

- Ogi reservoir, inside 20 km zone
- 4.2 km² area of reservoir.
- Sampling was conducted on 15-16 March 2018.

Fig. The study area, Ogi reservoir catchment, Kawauchi village, Fukushima.

Measurement and sampling

Unpublished work

Measurement and sampling

Fig. Air dose rate, ¹³⁷Cs iventory and area elevation of the catchment.

Fig. ¹³⁷Cs and ¹³⁴Cs inventory decay corrected at sampling and released day, and air dose rate (μ Sv·h⁻¹).

Fig. Vertical profile of ¹³⁷Cs cumulative inventory of soil catchment and reservir sediment. Each increment equals to 1 cm and 2 cm depth for sediment and soil, respectively.

Table. Data of ¹³⁷Cs in soil, sediment and its ratio between the previous studies and the present study. The ¹³⁷Cs deposition density value is decay corrected to each sampling date.

Water body	Туре	Location	Area (km²)	Deposition density in surrounding soil (Bq.cm ⁻²)	Deposition density in sediment (Bq.cm ⁻²)	¹³⁷ Cs soil to sediment ratio	Sampling date	References	
Oyado	Irrigation pond	Nihonmatsu city, 40~50	0.001	36	8	4.39	July, 2011		
Takayashiki		Irrigation pond	km from FDNPP	0.001	32	42	0.75	ouly, 2011	Yoshimura
Neppami-Ike			pond	Kawamata town, 40~50	0.002	35	7	5.29	August,
Matsuzawakami- ike		km from FDNPP	0.009	21	8	2.75	2011		
Suzuuchi		Okuma	0.004	640 ± 220	1300 ± 650	0.49 ± 0.30			
Funasawa	Irrigation	town, ~10 km from	0.011	290 ± 90	890 ± 630	0.33 ± 0.25	July, 2016	Wakiyama et. al., 2017	
Inkyozaka	pond	FDNPP	0.007	210 ± 110	160 ± 67	1.31 ± 0.88			
Kashiramori			0.008	90 ± 4	110 ± 46	0.82 ± 0.34			
Hibara	Lake	Yama gun, ~100 km from FDNPP	10.8	0.3 ± 0.15	1.2 ± 0.5	0.25 ± 0.23	August, 2016	Basuki et. al., 2018.	
Ogi	Reservoir	Kawauchi village, ~18 km from FDNPP	4.2	54 ± 10	102 ± 57	0.53 ± 0.31	March, 2018	Present study	

Fig. Location dependency of ¹³⁷Cs deposition density in soil and sediment. The data are decay corrected to the released day.

Fig. Time dependency of ¹³⁷Cs soil to sediment ratio. The data are decay corrected to the samping day

Table. Physicochemical property of surface soil catchment (0-2 cm depth)

Soil type	Sample (<i>n</i>)	Bulk density (g⋅cm ⁻³)	рН (Н ₂ О)	OM fraction (%)	Size fraction <75µm (%)	Exchangeable cation (cmol kg ⁻¹)					Base
						Na+	K+	Mg ²⁺	Ca ²⁺	CEC (cmol kg ⁻¹)	saturation (%)
Coniferous forest soil	3	0.37±0.11	4.34±0.15	37.47±15.94	20.99±6.86	0.19±0.03	0.40±0.09	0.52±0.14	4.45±0.85	82.12±17.32	6.77±1.77
Deciduous forest soil	4	0.30±0.14	4.52±0.19	40.11±14.94	17.67±4.21	0.14±0.01	0.50±0.07	0.65±0.11	8.29±1.21	77.26±25.23	12.39±4.34
Transition zone soil	3	0.46±0.09	4.73±0.04	19.00±2.88	66.09±7.17	0.23±0.07	0.28±0.02	0.35±0.02	4.50±0.20	58.74±7.55	9.12±1.23

Conclusions

- The air dose rate in forest area catchment inside 20 km zone still much higher than the reference dose.
- The sediment vertical profile showed the accumulation of ¹³⁷Cs in sediment. The low value of radiocesium soil to sediment ratio provided the evidence of radiocesium accumulation in the sediment from the catchment.
- We showed land used type (forest area) and slope of area were important in Cs-137 migration.
- The physicochemical property of the forest surface soil could be a possible factor of high retention of radioactive contaminant in the steep slope forest zone.
- We showed the distance dependence of radioactive contamination (Cs-137 inventory) of catchment area and time dependence of Cs-137 in soil and sediment ratio.